Logicky Blog

Logickyの開発ブログです

手書き文字を作れるJavascriptをつくってTensorFlowで予測させてみた(2)

この前、「手書き文字を作れるJavascriptをつくってTensorFlowで予測させてみた」という投稿でブラウザ上で手書きした文字画像を、MNISTで訓練したモデルで予測してみましたが、ものすごく精度が悪かったです。今回改めて、CNNを使ってやってみたらかなり精度が上がりました。何%か測ったりしてませんが、自分の手書きだと90%は超える感じでした。やっぱりCNNはすごいなーと思いました。でももしかしたら前回のものにミスがあり、CNNではなくても精度は本当はもっと高い可能性はあります。

もうちょっとやるとしたら、文字を画像の中心に適度な大きさで書く必要があり、例えば右上に小さく2と書いても認識されません。あとは、現在はMNISTに合わせて、手書き文字画像も背景黒、文字色白で作成するように固定していますが、これらの色を変えても認識するようにしたいです。今度やってみます。

Github

https://github.com/endoyuta/mnist_test

index.html

<html>
<head>
<title>MNIST TEST</title>
</head>
<body>
<h1>MNIST TEST</h1>
<canvas id="canvas1" width="400" height="400" style="border: 1px solid #999;"></canvas><br><br>
<input id="clear" type="button" value="Clear" onclick="canvasClear();">
<input id="submit" type="button" value="Submit" onclick="saveImg();"><br><br>
<img id="preview"><span id="answer"></span>
<script src="http://code.jquery.com/jquery-3.1.1.min.js"></script>
<script>
var url = 'http://127.0.0.1:8000/cgi-bin/mnist.py';
var lineWidth = 40;
var lineColor = '#ffffff';
var imgW = imgH = 28;

var canvas = document.getElementById('canvas1');
var ctx = canvas.getContext('2d');
var cleft = canvas.getBoundingClientRect().left;
var ctop = canvas.getBoundingClientRect().top;
var mouseX = mouseY = null;

canvasClear();
canvas.addEventListener('mousemove', mmove, false);
canvas.addEventListener('mousedown', mdown, false);
canvas.addEventListener('mouseup', mouseInit, false);
canvas.addEventListener('mouseout', mouseInit, false);

function mmove(e){
    if (e.buttons == 1 || e.witch == 1) {
        draw(e.clientX - cleft, e.clientY - ctop);
    };
}

function mdown(e){
    draw(e.clientX - cleft, e.clientY - ctop);
}

function draw(x, y){
    ctx.beginPath();
    if(mouseX === null) ctx.moveTo(x, y);
    else ctx.moveTo(mouseX, mouseY);
    ctx.lineTo(x, y);
    ctx.lineCap = "round";
    ctx.lineWidth = lineWidth;
    ctx.strokeStyle = lineColor;
    ctx.stroke();
    mouseX = x;
    mouseY = y;
}

function mouseInit(){
    mouseX = mouseY = null;
}

function canvasClear(){
    ctx.clearRect(0, 0, canvas.width, canvas.height);
    ctx.fillStyle = '#000000';
    ctx.fillRect(0, 0, canvas.width, canvas.height);
    $('#preview').attr('src', '');
    $('#answer').empty();
}

function toImg(){
    var tmp = document.createElement('canvas');
    tmp.width = imgW;
    tmp.height = imgH;
    var tmpCtx = tmp.getContext('2d');
    tmpCtx.drawImage(canvas, 0, 0, canvas.width, canvas.height, 0, 0, imgW, imgH);
    var img = tmp.toDataURL('image/jpeg');
    $('#preview').attr('src', img)
    return img;
}

function saveImg(){
    var img = toImg();
    console.log(img);
    $.ajax({
        url: url,
        type: 'POST',
        data: {img: img},
        dataType: 'json',
        success: function(data){
            if(data.status){
                $('#answer').html('は、' + data.num + 'です');
            }else{
                $('#answer').html('は、分かりません');
            }
        },
    });
}
</script>
</body>
</html>

cgi-bin/mnist.py

#!/usr/bin/env python

import sys
import os
import cgi
import json
import cgitb
cgitb.enable()

from PIL import Image
import numpy as np
from io import BytesIO
from binascii import a2b_base64

import mytensor

print('Content-Type: text/json; charset=utf-8')
print()

if os.environ['REQUEST_METHOD'] == 'POST':
    data = cgi.FieldStorage()
    img_str = data.getvalue('img', None)
    if img_str:
        b64_str = img_str.split(',')[1]
        img = Image.open(BytesIO(a2b_base64(b64_str))).convert('L')
        img_arr = np.array(img).reshape(1, -1)
        img_arr = img_arr / 255
        result = mytensor.predict(img_arr)
        print(json.dumps({'status': True, 'num': result}))
        sys.exit()
print(json.dumps({'status': False, 'num': False}))

cgi-bin/mytensor.py

import tensorflow as tf
import numpy as np
from tensorflow.examples.tutorials.mnist import input_data

def _weight_variable(shape):
    initial = tf.truncated_normal(shape, stddev=0.1)
    return tf.Variable(initial)

def _bias_variable(shape):
    initial = tf.constant(0.1, shape=shape)
    return tf.Variable(initial)

def _conv2d(x, W):
    return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME')

def interface():
    x = tf.placeholder(tf.float32, shape=[None, 784])
    y_ = tf.placeholder(tf.float32, shape=[None, 10])

    x_image = tf.reshape(x, [-1, 28, 28, 1])
    W_conv1 = _weight_variable([5, 5, 1, 32])
    b_conv1 = _bias_variable([32])
    h_conv1 = tf.nn.relu(_conv2d(x_image, W_conv1) + b_conv1)
    h_pool1 = tf.nn.max_pool(h_conv1, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')

    W_conv2 = _weight_variable([5, 5, 32, 64])
    b_conv2 = _bias_variable([64])
    h_conv2 = tf.nn.relu(_conv2d(h_pool1, W_conv2) + b_conv2)
    h_pool2 = tf.nn.max_pool(h_conv2, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')

    W_fc1 = _weight_variable([7 * 7 * 64, 1024])
    b_fc1 = _bias_variable([1024])
    h_pool2_flat = tf.reshape(h_pool2, [-1, 7 * 7 * 64])
    h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)

    keep_prob = tf.placeholder(tf.float32)
    h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)

    W_fc2 = _weight_variable([1024, 10])
    b_fc2 = _bias_variable([10])
    y_conv = tf.matmul(h_fc1_drop, W_fc2) + b_fc2

    cross_entropy = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(y_conv, y_))
    train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)
    correct_prediction = tf.equal(tf.argmax(y_conv, 1), tf.argmax(y_, 1))
    accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
    saver = tf.train.Saver()

    class CNNModel():
        pass
    model = CNNModel()
    model.x = x
    model.y_ = y_
    model.keep_prob = keep_prob
    model.y_conv = y_conv
    model.train_step = train_step
    model.accuracy = accuracy
    model.saver = saver
    return model

def predict(img):
    ckpt = tf.train.get_checkpoint_state('./cgi-bin/ckpt')
    if not ckpt: return False
    m = interface()
    with tf.Session() as sess:
        m.saver.restore(sess, ckpt.model_checkpoint_path)
        result = sess.run(m.y_conv, feed_dict={m.x: img, m.keep_prob:1.0})
        return int(np.argmax(result))

def train():
    if tf.train.get_checkpoint_state('./ckpt'):
        print('train ok')
        return
    mnist = input_data.read_data_sets('./mnist', one_hot=True, dtype=tf.float32)
    m = interface()
    with tf.Session() as sess:
        sess.run(tf.global_variables_initializer())
        for i in range(20000):
            batch = mnist.train.next_batch(100)
            m.train_step.run(feed_dict={m.x: batch[0], m.y_: batch[1], m.keep_prob: 0.5})
            if i % 100 == 0:
                train_accuracy = m.accuracy.eval(feed_dict={m.x:batch[0], m.y_: batch[1], m.keep_prob: 1.0})
                print("step %d, training accuracy %g"%(i, train_accuracy))
        m.saver.save(sess, './ckpt/model.ckpt')
    print('train ok')

if __name__ == '__main__':
    train()